Flexible non-nucleotide linkers as loop replacements in short double helical RNAs.

نویسندگان

  • W Pils
  • R Micura
چکیده

Ethylene glycol oligomers have been studied systematically as non-nucleotide loop replacements in short hairpin oligoribonucleotides. Structural optimization concerns the length of the linkers and is based on the thermodynamic stabilities of the corresponding duplexes. The optimum linker is derived from heptakis (ethylene glycol) provided that the duplex end to be bridged comprises solely the terminal base pair; the optimum linker is derived from hexakis(ethylene glycol) if a dangling unpaired nucleotide is incorporated into the loop. Moreover, these linkers have been compared to other commonly used linker types which consist of repeating units of tris- or tetrakis(ethylene glycol) phosphate, or of 3-hydroxypropane-1-phosphate. In all cases, the correlation between linker length and duplex stability is independent of the kind of counter ions used (Na(+), Na(+)/Mg(2+), K(+)or Li(+)). Furthermore, all duplexes with non-nucleotide loop replacements are less stable than those with the corresponding standard nucleotide loop. The results corroborate that the linkers are solvent-exposed and do not specifically interfere with the terminal nucleotides at the bridged duplex end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering.

We constructed chimeric proteins that consist of two green fluorescent protein variants, EBFP and EGFP, connected by flexible linkers, (GGGGS)n (n = 3 approximately 4), and helical linkers, (EAAAK)n (n = 2 approximately 5). The conformations of the chimeric proteins with the various linkers were evaluated using small-angle X-ray scattering (SAXS). The SAXS experiments showed that introducing th...

متن کامل

افزایش بیان اختصاصی ژن Cdk9 بوسیله microRNA-1 بالغ تک رشته در سلول های فیبروبلاست

Abstract Background: MicroRNAs (miRNAs) are endogenous, non-coding short RNAs (~22 nt) that can downregulate gene expression by translational repression, mRNA degradation, or transcriptional repression. miRNA misregulation has been implicated in pathogenic alterations such as cancer. In order to investigate microRNA functions in gene regulation and/or to modulate their expression in pathogenic...

متن کامل

Prioritization of Deleterious Variations in the Human Hypoxanthine-Guanine Phosphoribosyltransferase Gene

ABSTRACT             Background and Objectives: Non-synonymous single nucleotide polymorphisms are typical genetic variations that may potentially affect the structure or function of expressed proteins, and therefore could be involved in complex disorders. A computational-based analysis has been done to evaluate the phenotypic effect of no...

متن کامل

Do conformational biases of simple helical junctions influence RNA folding stability and specificity?

Structured RNAs must fold into their native structures and discriminate against a large number of alternative ones, an especially difficult task given the limited information content of RNA's nucleotide alphabet. The simplest motifs within structured RNAs are two helices joined by nonhelical junctions. To uncover the fundamental behavior of these motifs and to elucidate the underlying physical ...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 9  شماره 

صفحات  -

تاریخ انتشار 2000